Data Quality Test Cases - Best Practices Guide
Data Quality Test Cases - Best Practices Guide
Introduction
Core Principle: Always Return Failed Records
✅ GOOD Example
-- Returns all records with invalid ages for inspection
SELECT customer_id, first_name, last_name, age, registration_date
FROM customers
WHERE age < 0 OR age > 150;❌ BAD Example
Best Practice Categories
1. Null Value Validation
✅ GOOD: Identify Records with Missing Critical Data
order_id
customer_id
order_date
total_amount
status
❌ BAD: Using Boolean Logic
2. Data Type and Format Validation
✅ GOOD: Show Invalid Email Formats
user_id
username
email
registration_date
❌ BAD: Count-Based Validation
3. Range and Boundary Validation
✅ GOOD: Identify Out-of-Range Values
product_id
product_name
category
price
last_updated
✅ GOOD: Date Range Validation
4. Referential Integrity Checks
✅ GOOD: Find Orphaned Records
order_id
customer_id
order_date
total_amount
✅ GOOD: Find Missing Parent Records
5. Duplicate Detection
✅ GOOD: Show Duplicate Records with Details
user_id
email
username
registration_date
status
❌ BAD: Only Count Duplicates
6. Cross-Table Consistency
✅ GOOD: Validate Calculated Fields
7. Text and String Validation
✅ GOOD: Find Invalid Characters or Formats
✅ GOOD: Phone Number Format Validation
8. Temporal Logic Validation
✅ GOOD: Check Date Sequence Logic
9. Statistical Outlier Detection
✅ GOOD: Identify Statistical Anomalies
Writing Effective Test Case Descriptions
Template for Test Case Documentation
Example Documentation
Performance Considerations
Use Appropriate Indexing
Limit Large Dataset Queries
Summary Checklist
Last updated